
FPGA Placement Improvement Using a Genetic
Algorithm and the Routing Algorithm as a Cost

Function
Francisco Javier Veredas and Enrique J. Carmona

Department of Artificial Intelligence
Universidad Nacional de Educación a Distancia, Madrid, Spain
Email: fveredas2@alumno.uned.es and ecarmona@dia.uned.es

Abstract—In this paper the placement cost function in Field-
Programmable Gate-Arrays (FPGAs) is investigated. It is found
that the minimization of the traditional cost function does not
ensure the minimization of the critical path. This opens an
opportunity to investigate different cost functions. In the paper,
it is shown that using the routing algorithm as a cost function
improves the placement in the optimization of the final critical
path. It is also found that using this new cost function, a
genetic algorithm has advantages over the traditional simulated
annealing method.

I. INTRODUCTION

FPGAs [1] are configurable devices that can be used to im-
plement any digital hardware design. FPGAs typically contain
built-in hardwired processors, substantial amounts of SRAM
memory blocks, clock management systems and very fast
device-to-device board-level signaling technologies. FPGAs
are used in a wide variety of applications like data processing,
storage, instrumentation, network communications, or digital
signal processing.
A typical design flow for FPGAs consists of three major stages
[2]: circuit synthesis, design implementation, and FPGA bit-
stream upload. Here we are only interested in the second stage.
Specifically, the design implementation stage consists of four
steps: packing, placement, routing, and bit-stream generation.
One of the most critical steps is the placement, where the
specific location of each Configurable Logic Block (CLB) and
Input/Output (I/O) block on the target FPGA is determined.
Figure 1 shows an FPGA architecture with a placed circuit.
Finally, in this paper, we investigate how to improve the
placement quality.
This paper is organized as follows. In Section II, the placement
problem is presented. The alternatives of the FPGA placement
are presented in Section III. The methodology used for the
experiments is described in Section IV. Section V presents
the experimental results and their discussion. Finally, the last
section provides concluding remarks.

II. PLACEMENT PROBLEM IN FPGAS

In this paper, we are only interested in the problem of
placement. Although the problem of the best placement is NP-
hard [3], a placement solution (not necessarily optimal) can be
found always that the number of physical logic resources of
the FPGA is greater than the logic instances of the synthesized

Fig. 1: FPGA Architecture showing a four CLBs and four I/O
Blocks placed circuit.

circuit.
One important goal for FPGA placement is to obtain a
configuration of CLBs that can be successfully interconnected
in a subsequent routing step. So, the evaluation of the best
placement is dependent of the routing architecture, and the
placement algorithm. From the designer’s point of view, the
problems related to the placement are: the high computa-
tional cost of the placement algorithm, a placement solution
for which a routing cannot be found, and a bad quality
of placement metrics (area, critical path delay, and power
consumption). The placement algorithm tries to optimize the
circuit performance (critical path), area (minimum array size
and routing resources), and power consumption of the FPGA.
As the critical path is one of the most important optimization
parameters, here we will focus on optimizing its value. The
critical path is defined as the maximum delay path between
all the logic paths from an input to an output.
We can find several methods to solve the placement problem of
FPGAs in the literature: simulated annealing (SA) [4] [5] [6]



[7], genetic algorithm (GA) [8] [9] [10] [11] [12] and, analytic
method [13] [14] [15] [16]. SA is the most used placement
method in FPGAs and it is used for some commercial FPGAs
[17]. Some studies (e.g. [12]) show no advantage in using GA
versus SA. It is also found in the literature (e.g. [18] [19] [13])
that SA outperforms analytical methods in the quality metrics
of FPGA placement.
On the other hand, the cost function of the placement al-
gorithm depends on the FPGA architecture and the desired
optimization. As one of the objectives of the FPGA placement
is to determine the FPGA routing, the wiring congestion (how
many tracks are used in one channel) is an important metric.
Therefore, the final cost function should have a wire cost
term [5]. Note that the configurable hardware resources to
perform the routing in an FPGA are fixed. In a 2-D array
FPGA (Figure 1), the tracks per channel are the configurable
wires that determine the routing [1]. In most of the cases, we
also want to minimize the circuit delays associated with the
placement. These delays can be modeled with a timing cost
term [6]. Therefore, the traditional cost function to optimize
the critical path has the form:

Costwire,time = λ · timing cost+ (1 − λ) · wire cost
(1)

where timing cost is a normalized time cost factor,
wire cost is a normalized wiring cost factor, and λ is a
trade-off parameter. An example of using the traditional cost
function is [6], where it is found that, in average, the best
compromise between wire congestion and critical path cost is
obtained for λ = 0.5.
The extensive use of the traditional cost function by re-
searchers in the last twenty years allows us to think about
its validity. However, an open question is if this cost function
is accurate enough. We performed an experiment using the
VTR placement and routing tool [20] and the circuit s1238
from the MCNC benchmark [21]. Figure 2 shows the critical
path versus the cost function after routing is determined for
circuit s1238. This circuit was tested with different number of
iterations and using λ = 0.5 and λ = 1. To compare the results
obtained from the different runs, the same normalization
values were used. In particular, the normalization values are
chosen with the resulting wire cost and timing cost of the
first run. We can see in the mentioned figure that, given two
different cost values, if the former is smaller than the second,
the same order relation is not always guaranteed with the
respective critical path values. For example, in Figure 2(a),
a cost = 0.26 has associated in our experiment a critical
path of 4.44 ns. However, in another test, a cost = 0.33 has
associated a critical path of 4.36 ns. This indicates that if we
have a placement algorithm that optimizes the traditional cost
function, it will not necessarily optimize the critical path. We
repeated the same experiment with other two circuits (planet
and mm30a) from the MCNC benchmark. With these circuits,
we also observed the same behavior between the values of the
traditional cost function and final critical path.

Fig. 2: Critical path obtained for different model cost, see eq.
(1), after routing and using the VTR’s tool in the s1238 circuit.
This experiments shows that a decrease in cost values does not
guarantee a decrease in the critical path.

III. NEW SOLUTIONS TO THE PLACEMENT PROBLEM

Nowadays, the increase of computation power opens the
possibility of using the routing algorithm directly as a cost
function. In this case, we extract the timing-driver routing
algorithm of the VTR tool and insert it as a function in our
placement algorithm. Every time that this function is called,
the placement and its associated structures are loaded. After
the routing is performed, this new cost function returns the
critical path to be used as a cost value. This algorithm is called
VTR with routing (VTR-R).
On the other hand, as the new cost function is a complex
algorithm, it will consume more execution time than the
traditional cost function. In this context, we investigate the
possibility of using a GA, instead of the traditional SA, in
order to try of reducing the number of cost function evaluations
needed to achieve the convergence. This new algorithm is
called genetic algorithm for routing (GA-R). Therefore, it will
be important to analyze how many times (evaluations) the
cost function is called during the execution of the placement
algorithm. The final number of evaluations of the cost function
in the SA algorithm is [22]:

EvalSA = (num gen+ 1) · num blocks1.3333 (2)



where num gen is the number of generations, and
num blocks is the number of blocks of the circuit. The
number of blocks includes the CLB blocks and I/O blocks.
The number of generations depends on the exit criterion. This
criterion is satisfied when T<0.005 · cost

number of nets , where T
is the SA temperature and number of nets is the number of
nets of the circuit. The temperature update is carried out by
means of the expression Tnew = α · Told, where the α is a
parameter that depends of the new accepted CLB placements
per generation divided by the maximum number of blocks
movements [5].
As we can see from the eq. 2, the number of cost function
evaluations is not linear in relation to the number of blocks
in the circuit. On the other hand, in a GA, the number of
cost function evaluations (EvalGA) depends on the number of
generations (num gen) and population size (pop size), that
is, it is independent of the number of blocks of a circuit:

EvalGA = num gen · pop size (3)

Another advantage of GAs (though not explored in this paper)
is that they are easily parallelizable [23] [24]. The SA algo-
rithm used in [5] has only one thread, where a new solution
depends on the previous one. On the other hand, in a GA,
each individual of the population can be run independently
in a thread. For example, if we have a population of 100
individuals, we could run in parallel each individual in a
cluster of 100 cores. In this case, the execution time would
depend only of the number of generations (according to eq.
3). Note that a circuit with a large number of blocks will also
require a longer execution time, both with an SA and a GA,
because the routing is also much more complex.

IV. EXPERIMENTS METHODOLOGY

The FPGA architecture parameters used are shown in
Table I (refer to [22] for a detailed description of these
parameters). As the purpose of this paper is the study of
placement, we do not investigate the routing algorithm. So,
in our implementation we use a fixed channel width as it is
usual in FPGA placement investigations, e.g. [25]. The other
parameters are the default ones of the VTR tool and they
emulate the commercial Altera Stratix IV [26]. We use the
Wilton switch block type [27].
The characteristics of the circuits used can be seen in Table II.
These circuits are provided by the VTR framework in BLIF
format [28] and were mapped into CLBs blocks using the T-
VPack tool [29].
Note that the placement can be done for CLB and I/O blocks
or, alternatively, we can fix the placement for the I/O blocks (or
CLB blocks) and perform the placement only for CLB blocks
(or I/O blocks). In our experiments, to reduce complexity, we
fix the placement of the I/O blocks. The I/O blocks placement
file is obtained previously by making a placement with the SA
algorithm.
To obtain the correct critical path time, we perform the routing
step with the placement files coming from the SA algorithm.
The initial temperature of the SA is init temperature = 20 ·

TABLE I: FPGA architecture parameters used in the experi-
ments.

Parameter Description Value used

W Channel Width 200

N #BLE per CLB 10

K #Inputs BLE 6

L Segment distance of a track 4

Fcin Ratio of tracks connected to an input 0.15

Fcout Ratio of tracks connected to an output 0.1

Fs Switch block type 3 (Wilton)

TABLE II: Circuit characteristics and array size used for the
placement.

Circuit LUTs FFs LB I/O Nets Array Size

styr 238 5 15 20 105 4x4

planet 266 6 17 27 127 5x5

s1238 292 18 18 29 148 5x5

vda 253 0 19 56 176 5x5

daio-rec 311 81 19 62 230 5x5

mm30a 294 90 21 64 230 5x5

ecc 291 109 22 26 178 5x5

ex4p 148 0 22 112 206 5x5

C2670 214 0 15 221 305 7x7

rot 242 0 17 242 293 8x8

x3 255 0 20 234 281 8x8

i7 103 0 11 266 266 9x9

frg2 347 0 26 282 342 9x9

std dev, where the standard deviation, std dev, is calculated
with the cost variation of moving blocks randomly. The cost
of the initial random placement is obtained from the first time
that the normalization cost is calculated. In the SA algorithm,
with the traditional cost function, we used λ = 0.5. To find λ,
we performed a set of tests with λ going from 0 to 1, and we
found that λ = 0.5 was the value with best final critical path.
Algorithm 1 shows our implementation of the GA-R. This
GA uses a tournament size of two individuals, a one-point
crossover operator, and a mutation operator based in CLB
permutations. In the GA, it is also necessary to set the number
of generations, and the probabilities of mutation (Pm) and
crossover (Pc). The number of generations was set to have a
better number of cost function evaluations than that obtained
with SA. The probabilities (Pm = 0.04 and Pc = 0.5)
were tuned by means of the Local Unimodal Sampling (LUS)
method [30], using the circuit s1238.
A workstation with two Intel E7 Xeon processors with 32GB
of RAM was used for the experiments.
For each circuit, each algorithm was run 30 times. To create
a different heuristic in each run, we changed the deterministic
random function of the VTR tool to a semi-random function
[31].



Algorithm 1 Genetic Algorithm (GA-R).

Input: circuit netlist, GA parameters, FPGA parameters
Output: placement netlist

1: load circuit and FPGA structure;
2: random placement;
3: calculate cost;
4: save best individual;
5: while not termination (number generations) do
6: for all population do
7: select two random candidates from all population;
8: set parent1 from best of two candidates;
9: select two random candidates from all population;

10: set parent2 from best of two candidates;
11: if uniform random probability(0,1) <Pc then
12: cross parent1 and parent2;
13: save new two children in new population;
14: else
15: copy parent1 and parent2 in new population;
16: end if
17: end for
18: for all new population do
19: for each gen in chromosome do
20: if uniform random probability(0,1) <Pm then
21: mutate gen;
22: end if
23: end for
24: end for
25: resolve location conflicts;
26: calculate total cost;
27: if best new population >best old population then
28: save best new population as best individual;
29: else
30: replace worst in new population with

best old population;
31: end if
32: end while
33: save best placement;

V. EXPERIMENTAL RESULTS AND DISCUSSION

The results obtained by the algorithms VTR, VTR-R and
GA-R are shown in Table III. As it can be seen in the
mentioned table, the use of the new cost function (VTR-R
and GA-R) improves the average critical path in comparison
with the traditional cost function (VTR). This improvement is
obtained at the cost of an increase of the required execution
time, which is in the order of 105 or 106 higher. The critical
paths between VTR-R and GA-R are similar. But a noticeable
reduction in the execution time can be observed with GA-R
when this is compared with VTR-R.
In order to compare the experimental results from a statis-

tical point of view, we performed a nonparametric bootstrap
hypothesis test [32]. A nonparametric test was needed because
the data associated to each circuit rejected the null hypothesis
of normality (Shapiro-Wilk test [33]). The significance level

was set to α = 0.05. As it can be seen from the p-values
obtained in Table IV, the null hypothesis (there is no difference
between the two population means) is always rejected for all
the cases of VTR-R vs. VTR and GA-R vs. VTR. On the
other hand, the null hypothesis cannot be rejected in all the
cases of GA-R vs. VTR-R. Therefore, from the hypothesis
test results, we can say that there exists statistical evidence to
affirm that the critical path values obtained for VTR-R and
GA-R are better than those obtained for VTR. However, we
must assume similar critical path results between GA-R and
VTR-R.
Figure 3 shows an example of the convergence of two circuits
(planet and s1238). We can observe the typical random-walk
of the SA. This happens because the temperature parameter of
the SA forces the acceptance of placement solutions even with
worst cost. Looking at these graphics, we can ask if there is
not a possibility of stop the algorithm VTR-R before it reachs
the final iteration. As it can be seen in Figure 4, there is the
possibility of improving the critical path in the last iterations.
In the same figure, we can also see a behavior that illustrates
one of the typical problems with an SA algorithm: a good
critical path is found around the iteration 45, but because it is
possible to accept a placement solution worse than the current
one, the placement solution deteriorates. To solve this problem,
we could update and store the best solution obtained during
the search process and provide it as a solution if it is better
than the SA final solution.
Table V shows the cost function evaluations for the three
algorithms. The VTR-R algorithm needs more evaluations than
the VTR algorithm. This is because the termination criterion
of the VTR is fulfilled when not better placements are found.
Meanwhile the fine granularity of the cost function in VTR-R
reaches improvements in new generations. We can also see that
the number of evaluations in GA-R is a constant defined by eq.
3. Note that the GA-R needs fewer cost function evaluations
than VTR and VTR-R to get a better or similar result.
An open question is how perform the GA whether the tra-
ditional cost function is also used. The use of GAs with the
traditional cost function was investigated in [12]. In this paper,
the authors found that the results obtained by a GA are similar
to those obtained by an SA algorithm. These results are in line
with those obtained in [12]. As the number of cost function
evaluations in the SA can be higher than the GA, we can ask
if it is possible to get a better execution time using the GA
with the traditional cost function. However, some tests with
our GA showed that the answer to that question is negative.
This is because our GA was not optimized for execution time
and, additionally, the traditional cost function was designed
for working in an SA algorithm. For instance, the traditional
cost function has a normalization that it is keep constant for
several evaluations during a generation. This is not possible
with the GA. Another problem, already mentioned in section
II, is that the minimization of the traditional cost function
does not always guarantee a minimization of the critical path
(see Figure 2). This is not a big problem with the SA, where
the cost function is evaluated for one single CLB movement



(a) VTR planet (b) VTR-R planet (c) GA-R planet

(d) VTR s1238 (e) VTR-R s1238 (f) GA-R s1238

Fig. 3: Convergence of the best result of the planet and s1238 circuit. a) and d) show the evolution of the traditional cost
function value using SA (VTR). b) and e) show the evolution of the critical path of the VTR with the new cost function
(VTR-R). c) and f) show the evolution of the critical path average (brown) and the best critical path (blue) using the GA-R.

(an error in one cost function evaluation is compensated with
the next evaluation). On the other hand, with the GA, the
cost function is evaluated after several CLB movements (with
crossover and mutations). So, if the best individual is found
with a bad cost function prediction, it will pass to the next
generation and produce a wrong offspring.
Finally, it would have been interesting to compare the results
of the GA-R algorithm with other proposals that use the
routing as a cost function. However, as far as the authors know,
there are no such approaches in the literature. In addition, it
is difficult to make a fair comparison with other related works
because their objective to be optimized or the circuits used are
different from those used here.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the cost function of the
placement algorithm. We found that the minimization of the
traditional cost function used in the traditional SA algorithm
does not always produce a minimal critical path. To address

this problem, we proposed to use the routing algorithm as a
cost function. The experimental results showed that the quality
of the placement is improved using this new cost function
(VTR-R and GA-R). However, the observed drawback was a
longer required execution time. To reduce the execution time
with the new cost function, we proposed the use of a genetic
algorithm (GA-R). It was found that the GA-R improves
the execution time, maintaining a competitive critical path.
The new cost function will be useful in those cases where a
minimum critical path is needed.
While this paper has shown the benefits of using GA and
routing algorithm as a cost function, many possibilities are
still open to improve the results: (1) the inherent parallelism
of GAs can be exploited for improving the execution time;
(2) instead of using a fixed number of generations for GA-R,
a termination criterion depending on the convergence of the
algorithm, can be investigated; (3) a better routing algorithm as
a cost function can be investigated (instead of the default one
used in this work); and (4) in order to improve the placement



TABLE III: Experimental results for critical path and execution time averaged over 30 runs. SD = Standard Deviation, ∆c1

and ∆c2 shows the critical path’s difference between the VTR with VTR-R and GA-R respectively, ∆t1 and ∆t2 shows the
execution time’s difference between the VTR with VTR-R and GA-R respectively.

Crit.Path(ns) Exec.Time(sec)
Circuit VTR ± SD VTR-R ± SD ∆c1% GA-R ± SD ∆c2% VTR ± SD VTR-R ± SD ∆t1% GA-R ± SD ∆t2%

styr 3.08 ± 0.16 2.71 ± 0.02 -11.71 2.72 ± 0.02 -11.62 0.37 ± 0.05 1853 ± 377 4.98E5 1365 ± 110 3.67E5

planet 2.85 ± 0.08 2.59 ± 0.02 -9.26 2.60 ± 0.02 -8.83 0.65 ± 0.05 5031 ± 1127 7.78E5 3592 ± 328 5.55E5

s1238 4.44 ± 0.09 4.11 ± 0.02 -7.46 4.11 ± 0.03 -7.45 1.71 ± 0.62 5906 ± 1510 3.43E5 3969 ± 310 2.31E5

vda 3.24 ± 0.06 2.96 ± 0.03 -8.65 2.97 ± 0.03 -8.56 1.85 ± 0.78 8977 ± 1720 4.84E5 6318 ± 968 3.41E5

daio-rec 3.97 ± 0.08 3.47 ± 0.02 -12.62 3.49 ± 0.03 -12.23 0.95 ± 0.04 11960 ± 750 1.26E6 3161 ± 134 3.34E5

mm30a 13.16 ± 0.13 12.47 ± 0.03 -5.25 12.50 ± 0.04 -5.02 0.98 ± 0.05 11802 ± 1390 1.20E6 3395 ± 121 3.46E5

ecc 3.01 ± 0.07 2.75 ± 0.03 -8.79 2.75 ± 0.03 -8.81 0.78 ± 0.03 8617 ± 2051 1.10E6 5902 ± 897 7.55E5

ex4p 2.74 ± 0.04 2.60 ± 0.02 -5.03 2.64 ± 0.03 -3.67 3.35 ± 0.85 25236 ± 7181 7.54E5 6536 ± 1713 1.95E5

C2670 3.74 ± 0.08 3.41 ± 0.03 -8.79 3.53 ± 0.07 -5.70 12.12 ± 8.74 90184 ± 20692 7.44E5 9199 ± 2173 7.58E4

rot 3.78 ± 0.03 3.57 ± 0.04 -5.86 3.59 ± 0.06 -4.77 15.42 ± 10.06 137549 ± 23390 8.92E5 11470 ± 3230 7.43E4

x3 2.56 ± 0.00 2.23 ± 0.03 -13.01 2.20 ± 0.02 -14.01 11.52 ± 3.13 170177 ± 10699 1.48E6 12311 ± 2171 3.41E5

i7 1.93 ± 0.00 1.67 ± 0.01 -13.39 1.66 ± 0.01 -13.79 19.81 ± 4.38 241126 ± 15327 1.22E6 11180 ± 2942 5.63E4

frg2 3.31 ± 0.01 3.00 ± 0.03 -9.28 3.14 ± 0.05 -4.94 14.68 ± 2.17 258359 ± 18465 1.76E6 12229 ± 4328 8.32E4

Fig. 4: Convergence of a s1238 circuit with SA with the new
cost function (VTR-R). The main critical path optimization
is done in half of the iterations, at the end there is a small
improvement in the critical path.

quality, the routing parameters (e.g. routing effort, number of
tracks, etc.) can also be investigated.

REFERENCES

[1] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-
Programmable Gate Arrays. Springer Science & Business Media, 1992,
vol. 180.

[2] D. Chen, J. Cong, P. Pan et al., “FPGA design automation: A survey,”
Foundations and Trends R© in Electronic Design Automation, vol. 1,
no. 3, pp. 195–330, 2006.

TABLE IV: Results of the nonparametric Bootstrap hypothesis
test (p-values).

Circuit VTR-R vs. VTR GA-R vs. VTR GA-R vs. VTR-R

styr 0.0001 0.0001 0.6991

planet 0.0001 0.0001 0.1104

s1238 0.0001 0.0001 1

vda 0.0001 0.0001 1

daio-rec 0.0001 0.0001 0.0594

mm30a 0.0001 0.0001 0.0645

ecc 0.0001 0.0001 1

ex4p 0.0001 0.0001 1

C2670 0.0001 0.0001 1

rot 0.0001 0.0001 1

x3 0.0001 0.0001 1

i7 0.0001 0.0001 1

frg2 0.0001 0.0001 1

[3] N. A. Sherwani, Algorithms for VLSI physical design automation.
Springer Science & Business Media, 2012.

[4] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, “Placement and
routing tools for the Triptych FPGA,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 3, no. 4, pp. 473–482, 1995.

[5] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in Field-Programmable Logic and Applications.
Springer, 1997, pp. 213–222.

[6] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
FPGAs,” in Proceedings of the 2000 ACM/SIGDA eighth international
symposium on Field programmable gate arrays. ACM, 2000, pp. 203–
213.

[7] K. Vorwerk, A. Kennings, and J. W. Greene, “Improving simulated
annealing-based FPGA placement with directed moves,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 28, no. 2, pp. 179–192, 2009.

[8] Z. Baruch, O. Creţ, and H. Giurgiu, “Genetic algorithm for FPGA
placement,” in Proceedings of the 12th International Conference on
Control Systems and Computer Science (CSCS12), vol. 2, 1999, pp.
121–126.

[9] R. Venkatraman and L. M. Patnaik, “An evolutionary approach to timing
driven FPGA placement,” in Proceedings of the 10th Great Lakes
symposium on VLSI. ACM, 2000, pp. 81–85.



TABLE V: Number of cost function evaluations averaged over
30 runs (SD = Standard Deviation).

Number of Evaluations.
Circuit VTR ± SD VTR-R ± SD GA-R ± SD

styr 7969 ± 434 12510 ± 2408 8400 ± 0

planet 11754 ± 447 19207 ± 2737 14000 ± 0

s1238 12603 ± 402 21470 ± 4077 14000 ± 0

vda 25250 ± 903 23680 ± 898 14000 ± 0

daio-rec 28279 ± 1154 52662 ± 815 14000 ± 0

mm30a 30024 ± 902 47319 ± 3939 14000 ± 0

ecc 14002 ± 582 24466 ± 510 14000 ± 0

ex4p 58678 ± 1513 75667 ± 14270 14000 ± 0

C2670 127713 ± 2805 172182 ± 35844 14000 ± 0

rot 153654 ± 2791 188909 ± 38129 14000 ± 0

x3 146850 ± 2571 247564 ± 4556 14000 ± 0

i7 170669 ± 4067 276803 ± 25262 14000 ± 0

frg2 192546 ± 2660 318533 ± 20008 14000 ± 0

[10] M. R. del Solar, J. A. G. Pulido, J. M. S. Perez, and M. A. V. Rodriguez,
“Genetic algorithms for solving the placement and routing problem of
an FPGA with area constraints,” Proc. IEEE ISDA, pp. 31–35, 2004.

[11] S. N. R. Borra, A. Muthukaruppan, S. Suresh, and V. Kamakoti, “A novel
approach to the placement and routing problems for field programmable
gate arrays,” Applied Soft Computing, vol. 7, no. 1, pp. 455–470, 2007.

[12] P. Jamieson, “Revisiting genetic algorithms for the FPGA placement
problem.” in GEM. Citeseer, 2010, pp. 16–22.

[13] Y. Xu and M. A. Khalid, “QPF: efficient quadratic placement for
FPGAs,” in Field Programmable Logic and Applications, 2005. Inter-
national Conference on. IEEE, 2005, pp. 555–558.

[14] P. Gopalakrishnan, X. Li, and L. Pileggi, “Architecture-aware FPGA
placement using metric embedding,” in Design Automation Conference,
2006 43rd ACM/IEEE. IEEE, 2006, pp. 460–465.

[15] M. Xu, G. Gréwal, and S. Areibi, “Starplace: A new analytic method
for FPGA placement,” INTEGRATION, the VLSI journal, vol. 44, no. 3,
pp. 192–204, 2011.

[16] T.-H. Lin, P. Banerjee, and Y.-W. Chang, “An efficient and effective
analytical placer for FPGAs,” in Proceedings of the 50th Annual Design
Automation Conference. ACM, 2013, p. 10.

[17] A. Ludwin and V. Betz, “Efficient and deterministic parallel placement
for FPGAs,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 16, no. 3, p. 22, 2011.

[18] B. M. Riess, K. Doll, and F. M. Johannes, “Partitioning very large
circuits using analytical placement techniques,” in Design Automation,
1994. 31st Conference on. IEEE, 1994, pp. 646–651.

[19] M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAs,” in Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on. IEEE, 2012, pp. 143–150.

[20] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “VTR 7.0: Next genera-
tion architecture and CAD system for FPGAs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 2, p. 6,
2014.

[21] M. LGSynth93, “Benchmarks,” Obtained from http://www. eecg. toronto.
edu/˜ lemieux/sega/ccts blif. tar.

[22] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for deep-
submicron FPGAs. Springer Science & Business Media, 2012, vol.
497.

[23] E. Cantú-Paz, “A survey of parallel genetic algorithms,” in Calculateurs
paralleles. Citeseer, 1998.

[24] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 5, pp. 443–
462, 2002.

[25] P. Jamieson, “Exploring inevitable convergence for a genetic algorithm
persistent FPGA placer,” 2011.

[26] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee,
and P. Pan, “Architectural enhancements in Stratix-III and Stratix-IV,”

in Proceedings of the ACM/SIGDA international symposium on Field
programmable gate arrays. ACM, 2009, pp. 33–42.

[27] M. I. Masud and S. J. Wilton, “A new switch block for segmented
FPGAs,” in Field programmable logic and applications. Springer, 1999,
pp. 274–281.

[28] [Online], “Berkeley logic interchange format (BLIF).” Oct Tools Distri-
bution 2, 1992.

[29] ——, “VTR tool, University of Toronto,”
http://https://github.com/verilog-to-routing/vtr-verilog-to-routing/,
accessed: 2018-04-09.

[30] M. E. H. Pedersen and A. J. Chipperfield, “Local unimodal sampling,”
HL0801 Hvass Laboratories, 2008.

[31] [Online], “rand s , MSDN Microsoft Website,”
https://msdn.microsoft.com/en-us/library/sxtz2fa8.aspx, accessed:
2018-04-09.

[32] J. P. Romano et al., “Bootstrap and randomization tests of some
nonparametric hypotheses,” The Annals of Statistics, vol. 17, no. 1, pp.
141–159, 1989.

[33] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3-4, pp. 591–611, 1965.


